This is the second problem of the test. You click points to set a line, then click “solution set” to shade in one side. Note (just like the Algebra II test) the points snap to half-grid points, not to grid points, a circumstance I find hazardous. Also, if you click on solution set to color a side, then realize your line was wrong, you have to click back on “line” again but the color goes away, so you have to add the color back again after the line is fixed. This is true even if switching the line from solid to dotted.

I should add this is one case where I see the superiority of open response to multiple choice. Here’s an inequality graphing problem from our old state test:

The lack of choices makes the problem a dotted-or-solid / above-or-below question where the actual shape of the graph is given away.

The question here is fine, but what if a student drags in the wrong number and wants to fix their answer? Removing a number only works if you drag the number back to the original number boxes, just “tossing” the number to a random position outside the answer box doesn’t work.

One common technique in the PARCC interface is for students to fill in sentences with a drag-down menu. By my eye, though, the interface doesn’t look much like a sentence, and I could imagine a student not understanding they are placing words between f(2) and g(2) and so forth to produce something that is meant to be read from left to right.

I guess 4 answer boxes — clear overkill — is better than the situation with 2 answer boxes where the suggestion seems strong to fill both of them even if one of the answers turns out to be extraneous.

I’m pretty sure logarithms aren’t supposed to be on the Algebra I test? Also, the graph is drawn automatically through the points, unless it can’t like in the example above. It took me a bit of deciphering to realize there’s an asymptote on there (right on the y-axis) and the asymptote can be slid around, so the reason the graph wasn’t showing up is the points were on opposite sides of the asymptote.

Do the blanks really have to be so large? I admit to getting confused because the symbols spread out in a single function looked to me like function-break-really small expression-break-random parenthesis and I had to do a double-take before I realized what was going on.

I hope students have their window large enough to realize (or least deduce from there being a “Part A”) that there is a “Part B” to the question.

There’s a truly weird option to change colors of things. Sometimes I can get it to trigger but I’m not sure how. The upper right inequality in pink shows what things look like after you’ve messed with the color.

There’s even an interface for systems of linear inequalities. Notice how there’s still a snap-to-half-grid feature even when the y-axis goes up by 5.

Why does one “find the zeros” question have a drag-and-drop interface, while this one gives a list?

]]>

http://practice.parcc.testnav.com/

you can now find complete PARCC sample exams. Since it’s the one I most likely have to worry about next year, I tried out the Algebra II exam.

While I haven’t checked the other tests yet, the Algebra II has laid off the “show your work” type question. I’m going to put this in the positive column (I was deeply worried about open responses being graded by an army of interns; plus the turnaround needs to be very fast because this is technically the final for our Algebra II class. Imagine having to shave off an extra two months from the end to give time for the test to be graded). [ADD: According to this comment, this only applies to the final exam, and there are still "show your work" type questions on the other tests.]

Some question-by-question comments:

I admit I was baffled enough by this one to check Wolfram Alpha (I got m = -15/2 where m = 1 was extraneous), until I realized the key phrase “you may not need to use all of the answer boxes”. We’re going to have to specially train students for that trick, I think.

I tested this one on my students. The majority put the value for x which makes the statement true (1) not the extraneous solution (-3/4). I can understand the motivation here: forcing students to go through the factoring rather than just test numbers or even eyeball the thing, but putting the extraneous solution as an answer is rare and I can imagine a legion of students being confused by this.

I always considered the trick of rejiggering a number’s base (turning 4 into 2^2) to be something of a side trick; I’ve never had to use it outside a college algebra book.

Because saying “complete the square” would be too easy. In all seriousness, this is one of those problems I would have many students know how to do but get intimidated by the language of the question.

So the first 8 questions (which I was just quoting from) are in the non-calculator portion of the test. The remaining 26 are from the calculator portion. The students will have access to a TI-84 emulator.

I’ve got mixed feelings on this one. In a way it’s a neat bit of factoring (yank out the (x-y) terms, and what remains will be a difference of squares, tossing an extra (x-y) on the pile) but it also looks nothing like the kind of factoring from any textbook I’ve used; I’m fairly sure our Carnegie Learning book (which was written from scratch specifically for Common Core) has nothing like it.

The number of fancy widgets to enter answers has dropped considerably, but here’s one; you drag and drop in order.

Also noteworthy: there are two problems involving average rate of change. I think in our textbook there was enough material to squeeze out a single day. The PARCC writers must be putting rather more emphasis on it.

Here’s another widget: the dots are dragged around to form the graph. I was somewhat thrown by the dots not just snapping to the grid but also the halfway points. I believe this is a bad idea. A student could easily think they have a correct answer but leave the dot halfway rather than right on the appropriate point.

My students would be thrown off by the wording here. I think the intermediate step is actually helpful, but the phrase “Product of greatest common factor and binomial” looks so technical many of them would shut down.

I’m used to tests that make the statistics so easy students can answer them with no training whatsoever, but this is what I’d call a real statistics question.

This is a widget that lets you select an interval on the number line. In the process of trying to enter an answer the number line disappeared. Then going back a question and returning I was unable to get anything to appear at all.

]]>

“Mathematics classes”: The high school curriculum delivered to a typical student in the United States. This usually excludes classes like “Statistics” or “Financial Math”.

“Mathematics literacy”: The kind of “good citizen” math that people refer to in articles like Headlines from a Mathematically Literate World. The word can also mean “ability to problem solve”, but that’s not what I mean here.

Taking the Headlines article and the classes of a typical high school mathematics student, how many of the headlines would a a student understand?

At the very least, understanding the entire list requires knowing about: correlation vs. causation, inflation, experimental replication, estimation of large numbers, incompatibility of comparisons with different conditions, understanding how tax brackets work, meaninglessness of predictions within a margin of error, statistically unlikely events, and reversion to the mean.

None of these will ever occur in an traditional math class. In other words, in the list of supposed math literacies, the typical math student in the US receives zero of them. (Some might possibly show up in a class labelled “Economics” or “Free Enterprise”, but those don’t get called Math Classes).

It’d be fair to argue I’m being highly specific in my starting definitions, but I often see the “good citizen” argument used during a general “why are we teaching math” type discussion which assumes a traditional math class track. That sort of argument only works if people are prepared to also overhaul the curriculum (by putting, for example, statistics before calculus as Arthur Benjamin discusses at TED).

]]>

I haven’t seen nearly as much material for a negative divided by a negative. One can certainly appeal to the inverse — since , . Google searching leads to answers like that, but I’ve found nothing like the multiplication picture above.

Can anyone explain directly, at an intuitive level, why a negative divided by a negative is a positive? Or is the only way to do it to refer to multiplication?

]]>

[Source.]

Theory: Mathematical exposition has evolved just like fiction writing has. However, tradition has held stronger in mathematics (likely due to a need for precision) and it means that clarity in writing is if not actively discouraged at least passively devalued.

Theory: We are not anywhere near the threshold of simplest and clearest explanations in the exposition of mathematical subjects.

Still, what used to be difficult is now considered easier. Various subjects have shifted their supposed level. For instance, not long ago College Algebra was the prestige class at the top of the high school level.

Furthermore, our raw definitions of what each class is has shuffled the actual content of subjects; Algebra I from the 1940s is not the Algebra I of today.

Theory: It would be possible to take a “hard” subject like group theory or transcendental number theory and make it comprehensible at a lower level. However, as there is no requirement to do so there is little motivation to make the subject easier. When a curriculum shift happens to move topics to a lower level, mathematical exposition evolves to catch up.

]]>

However, in the midst of work I realized I was assuming the readers would remember how integer operations went, and it was quite possible they forgot, so I worked on a appendix. The appendix ballooned into a full fledged … short story? novella? … and got to the point that I even separated addition/subtraction from multiplication/division.

So the first part (addition/subtraction of integers) is close to ready, and it does follow my percepts, namely–

1.) that it should have a smooth writing style modeled after popular math articles (like Steven Strogatz or Martin Gardner) rather than textbooks

2.) that there are no “problems” but rather “puzzles”, roughly defined as anything that wouldn’t be out of place alongside a Sudoku book or in the middle of a Professor Layton game

3.) that there is a strong emphasis on meta-thinking; that is, having readers examine whatever mental model they are using in a particular part of mathematics and diagnosing where misconceptions may come about at the internal level.

As an example of #3, I start by asking the reader to add 2 + 2 (really), examining the possible ways of visualizing it and which ways might be more or less helpful.

In any case, everything is so unlike the textbook approach that I need some beta testers. In particular, while I would like some people who are adept in mathematics, I would also like some people who think that are not good at math or even actively dislike it. I’m guessing the latter don’t read this blog I’m going to need some help — if you know someone who might be a good candidate, could you send the word along? I’ll get back to everyone in a few weeks.

You can either post here or toss a line to my email over at my About Page.

]]>

Math teachers out there may appreciate this misconception I've been wrestling with for the past few days: http://t.co/Cl0Nr3oUSN

— Jared Cosulich (@jaredcosulich) January 9, 2014

It turns out Impossible Learning is a just-started-last-month blog where Jared is trying to learn Calculus and post about his struggles. It’s terrific and you should read it. See him ask the perennial question When Will I Use This?

And I immediately found myself saying “come on, when am I ever going to have to find the limit of this random equation”.

I felt like I was back in High School again.

But seriously, why is this one of the first things I’m directed to learn when I want to know more about Calculus? Why is it so hard for me to find some practical applications of this material? I know there is value in understanding the abstract math, but I’d like to balance that with at least some understanding of how this works practically…

Or his attempt at explaining the power rule:

I don’t think this actually counts as a proof, but it definitely made the “Power Rule” click for me a bit more. Basically it’s saying that the derivative of a square (x²) is two lines (2x) and the derivative of a cube (x³) is three squares (3x²).

So for a square to get a tiny bit bigger you need to add on two lines (one to the top and one to a side). Similarly for a cube to get a tiny bit bigger you need to add a square to three sides (e.g. top, right, and front).

]]>

One night, in an attempt to combat insomnia, you begin counting (1, 2, 3, …), but you decide to do it digit by digit. As you go along, for example, the 15th digit you count is the 2 of the number 12.

1 2 3 4 5 6 7 8 9 10 11 12a.) What’s the 50th digit you count?

b.) What’s the 100th digit you count?

c.) What’s the 1000th digit you count?

d.) What’s the 1,000,000th digit you count?

]]>

The title strikes me as odd, given that the general argument is aimed at all algebra, and the text constantly references algebra as a whole rather than the quite US-specific version of Algebra II. (As far as I’m aware no other country has such a thing; most of them integrate all forms of mathematics together.) What is Algebra II anyway, and where is the cutoff point where Nicholson Baker considers algebra to be too hard to handle? He hints at what he’d like as a replacement, which strikes me as a math appreciation analogous to music appreciation courses:

We should, I think, create a new, one-year teaser course for ninth graders, which would briefly cover a few techniques of algebraic manipulation, some mindstretching geometric proofs, some nifty things about parabolas and conic sections, and even perhaps a soft-core hint of the innitesimal, change-explaining powers of calculus. Throw in some scatter plots and data analysis, a touch of mathematical logic, and several representative topics in math history and math appreciation.

This seems like a truly random collection of topics, but it sounds like Mr. Baker is basing his list off the notion of using *The Joy of x* by Steven Strogatz as a possible text.

I have had some personal experience with using popular texts; when I team-taught statistics at the University of Arizona we used *The Drunkard’s Walk*, *Fooled by Randomness*, and *Struck by Lightning: The Curious World of Probabilities*. While it led to interesting discussions, there just wasn’t enough meat to have students do problem solving based solely on the text. The math from the books was purely a passive experience. (We still did just fine by augmenting with our own material.)

I still hold forward the absurd idea that students still solve math problems in a math class. If you’re designing a freshman mathematics-teaser course, I might humbly suggest *Problem Solving Strategies: Crossing the River with Dogs*, which has the virtue of steering away from algebra as the sole touchstone for problem solving.

Back to Mr. Baker’s attempt to define Algebra I:

Six weeks of factoring and solving simple equations is enough to give any student a rough idea of what the algebraic ars magna is really like, and whether he or she has any head for it.

Mr. Baker himself seems to have a confused idea of what algebra is like, but he’s not alone. (See: my prior post on what is algebra and why you might have the wrong idea.) Also of note: some countries don’t bother to factor quadratics. (I haven’t made a map comparing countries, but it seems to be continental Europe that ignores it and just says “use the quadratic formula”.)

I could see solving equations managed in six weeks, but in a turgid, just-the-rules style that would be the opposite of what we’d want in this kind of appreciation class in the first place. Just the concept of a variable can take some students a month to wrap their head around, making me disturbed by the notion that six weeks would be enough for a student to find “whether he or she has any head for it”. (This isn’t even touching the issue of just how much is internal to the student. I’ve heard dyscalculia estimates of up to 7% of all students, but excluding that group a great deal of the attitude seems culturally specific. Allegedly in Hungary [I don't have a hard research paper or anything, this is just from personal anecdotes] it is quite common for folks to say mathematics was their favorite subject in school and the level of disdain isn’t remotely comparable to the US.)

They are forced, repeatedly, to stare at hairy, squarerooted, polynomialed horseradish clumps of mute symbology that irritate them

The article’s invective along these lines makes me wonder again how much the visual aspect to mathematics is the source of hatred, as opposed to the mathematics itself.

This picture is from the Adventure Time episode “Slumber Party Panic” and is supposed to represent the ultimate in math difficulty. However, the math symbolism is strewn truly at random and there is no real problem here. I am guessing a good chunk of the audience *couldn’t even tell the difference* and for them, any difficult math problem looks like random symbolic gibberish.

This is related to another issue, that of bad writing. Here’s Mr. Baker quoting a textbook:

A rational function is a function that you can write in the form f(x) = P(x)/Q(x), where P(x) and Q(x) are polynomial functions. The domain of f(x) is all real numbers except those for which Q(x) = 0.

I claim the above definition is simply bad writing, and a cursory check of the Internet reveals several definitions I’d peg as clearer in a students-who-don’t-like-math-are-trying-to-read sense:

any function which can be written as the ratio of two polynomial functions.

a function that is the quotient of two polynomials

Some random webpage I found at Oregon State:

“Rational function” is the name given to a function which can be represented as the quotient of polynomials, just as a rational number is a number which can be expressed as a quotient of whole numbers.

Hardy’s *A Course of Pure Mathematics*, page 38:

the quotient of one polynomial by another

Godfrey Harold Hardy admittedly goes on from there, but his text is written for mathematicians. High school texts have no such excuse.

In a similar vein, the article later quotes a 7th grade Common Core standard:

solve word problems leading to equations of the form px + q = r and p(x+q)=r, where p, q, and r are specific rational numbers

which I suppose is meant to be horrifying, but in this case the standards are written for the teachers and aim to remove any ambiguity. Here’s problems that matches the standard:

1. You bought 3 sodas for 99 cents each and paid 10 cents in tax. How much money did you pay?

2. You bought 4 candies for 1.50 each and paid $6.20. How much was tax?

The standards can’t simply produce many examples and gesture vaguely. They must be exact. Just because 4th grade specifies that students “Explain why a fraction a/b is equivalent to a fraction (n×a)/(n×b)” does not mean students are using variables to do so. (In case you’re curious what it does look like to the 4th graders, Illustrative Mathematics has tasks here and here matching the standard.)

There’s lots more to comment on, but let me leave off for the moment on this quote, because I’m curious…

Math-intensive education hasn’t done much for Russia, as it turns out.

…is this statement (in the last paragraph of the article) accurate?

]]>

Fold from upper right to lower left (colors added to both sides of the paper for clarity):

Follow up with one more fold:

Voila, a proof that the square root of 2 is irrational.

(Mind you, there is some reasoning involved, but what’s the fun in giving that away? Start with “if the square root of 2 is rational, then there is some isosceles right triangle where the sides are the smallest possible integers.”)

This proof first appears in slightly different form in 1892. The paper folding version is from Conway & Guy in 1996.

]]>